A $S_{Ad}^{-S}_{Ad}$ TRANSITION OF A HOMOLOGOUS SERIES OF 4-CYANOPHENYL 4-(4-ALKOXY-3-BROMOBENZOYLOXY)BENZOATES

Shunsuke TAKENAKA, Yoshihide MASUDA, Shigekazu KUSABAYASHI, Yasuo NISHIHATA, * and Hikaru TERAUCHI *

Department of Applied Chemistry, Faculty of Engineering
Osaka University, Suita, Osaka 565
*Department of Physics, Faculty of Science, Kwansei-Gakuin

University, Nishinomiya, Hyogo 662

The thermal properties of some homologs of 4-cyanophenyl 4-(4-alkoxy-3-bromobenzoyloxy)benzoates have been examined, where the octyloxy homolog shows the reentrant phenomenon of a $S_{Ad}-N_{re}-S_{Ad}-N-I$ type, and the nonyloxy and decyloxy homologs show the mesomorphism of a $S_{Ad}-S_{Ad}-N-I$ type, and experience a $S_{Ad}-S_{Ad}$ transition.

It has been known that liquid crystalline materials having a cyano or a nitro group at the terminal frequently display somewhat interesting mesomorphism such as a reentrance. 1,2 A homologous series of 4-cyanophenyl 4-(4-alkoxy-benzoyloxy)benzoates(1) is a typical example.

$$n - C_n H_{2n+1} O - COO - C$$

The nonyloxy homolog of $\mathfrak L$ displays the reentrant mesomorphism of a N_{re} - S_{Ad} -N-I type, 3) where N_{re} and S_{Ad} represent a reentrant nematic phase and a smectic A phase having a partially bilayer arrangement of the molecules, respectively. Recently, we reported that a binary mixture consisting of N-[4-(4-heptyloxybenzoyloxy)-benzylidene]-4-cyanoaniline and 4-cyanophenyl 4-(4-nonyloxy-3-bromobenzoyloxy)-benzoate displays the reentrant mesomorphism of a $S_A(2)$ - N_{re} - $S_A(1)$ -N-I type, where

the layer spacings for the upper ($S_{A}(1)$) and lower ($S_{A}(2)$) phases are 1.16 and 1.26 times of the averaged molecular length of both components, respectively. 4) These facts indicate that both $S_{\underline{\mathsf{A}}}$ phases have the partially bilayer arrangement of the molecules ($S_{\mbox{\scriptsize Ad}}$).

In this paper, we describe the thermal properties of a homologous series of 4-cyanophenyl 4-(4-alkoxy-3-bromobenzoyloxy)benzoates(2).

Table 1. Transition temperatures ($^{\circ}$ C) for the homologous series of 2 and 1

n	С		SAd	(2)	Nre		SA	d ⁽¹⁾	N		I
				Compo	unds	2					
7	•	125.6	(–	62.5)	-		_		•	196.8	•
8	•	116.1	(–	72.8)	(.	81.5)	•	136.8		186.5	•
9	•	95.7	(–	82.7)	-			155.3		181.3	•
10		96.8	(–	80.7)	-		•	161.6		170.9	•
				Compo	unds	13)					
8	•	116	-		-		-			229	•
9	•	121	_		(–	116)		198		229	•
10	•	108	_		(–	95)		208		222	•

a) The parentheses indicate monotropic transitions. C, S, N, and I represent crystal, smectic, nematic, and isotropic phases, respectively.

The homologs were prepared by a usual method. 3) The transition temperatures are shown in Table 1, and are plotted against the carbon number, n in Fig. 1. The thermal stabilities of the N and S $_{\mathtt{A}}$ phases for $\underline{\mathbf{2}}$ are less than those for $\mathbf{1}$, due to an increase in the molecular breadth. However, 2 produce two kinds of $\mathbf{S}_{\mathbf{A}}$ phases having a uniaxial nature. As mentioned in a previous paper, 4) these have the partially bilayer arrangements of the molecules. The $S_{Ad}(1)$ phase has a typical fan texture, and the $\boldsymbol{S}_{\mbox{\scriptsize Ad}}(2)$ phase a considerably broken one. The $S_{Ad}(2)$ phase for the Δ and $O; 2, \Delta$ and $\bullet; 1.$ heptyloxy homolog shows a typical fan texture.

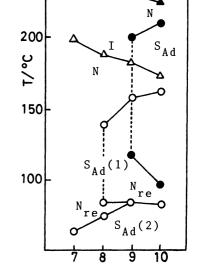
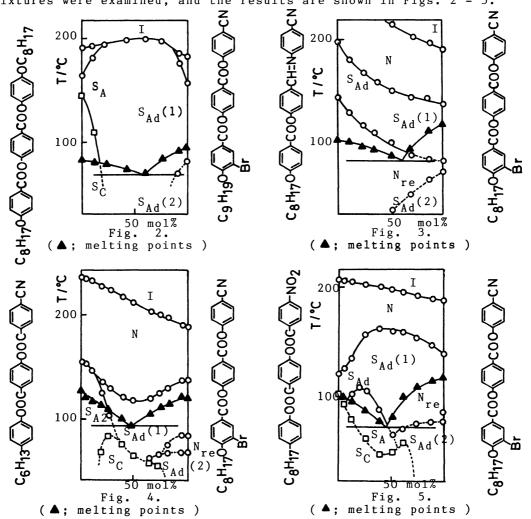



Fig. 1.

The octyloxy homolog shows the reentrant mesomorphism of a $S_{Ad}(2)-N_{re}-S_{Ad}(1)-N-I$ type. The nonyloxy and decyloxy homologs show the mesomorphism of a $S_{Ad}(2)-S_{Ad}(1)-N-I$ type. The heptyloxy homolog shows the mesomorphism of a $S_{Ad}(2)-N-I$ type. The $S_{Ad}-S_{Ad}$ transitions could be easilly detected by means of a polarizing microscope fitted with a Mettler FP-5 heating stage. However, the $S_{Ad}-S_{Ad}$ transitions could not be detected by means of a differential scanning calorimeter. We assume that the latent heats for the transitions are less than 50 J/mol. As far as we know, series 2 is the first instance to experience the apparent $S_{Ad}-S_{Ad}$ transitions in a pure state, though Shashidhar et al. have also reported that a binary mixture consisting of 4-nitrophenyl 4-(4-hexyloxybenzoyloxy)benzoate and 4-cyano-4'-(4-nonyloxybenzoyloxy)azobenzene, shows a similar transition, which can be observed by the X-ray measurement. S_{Ad}

In order to characterize these $\rm S_{Ad}$ phases, the miscibility diagrams for some binary mixtures were examined, and the results are shown in Figs. 2 - 5.

liquid crystal, thereby the $\mathbf{S}_{\mathbf{A}} - \mathbf{N}(\mathbf{I})$ transition temperatures show a remarkable non-ideal solution behavior. However, the thermal stabilities of both $S_{Ad}(2)$ and $\mathbf{S}_{\underline{\mathbf{C}}}$ phases rapidly decrease with increasing the concentrations of both components. In Fig. 3, the thermal stability of the $S_{Ad}(2)$ phase also decreases with increasing the concentration of the reference compound, while the $S_{\Delta d}(1)$ phase is well miscible with the $S_{\mbox{\scriptsize Ad}}$ phase of the reference compound. In Fig. 4, both $S_{Ad}(1)$ and $S_{Ad}(2)$ phases are immiscible with the S_{A2} phase of the reference compound, and the diagram shows an injected S_{C} (probably S_{C2}) phase around the center of the diagram. In Fig. 5, the $S_{\mbox{Ad}}(1)$ phase is miscible with the S_{Ad} phase of the reference compound, though the $S_{Ad}(2)$ phase disappears in the diagram. Some interesting trends are recognized in Figs. 4 and 5. The first is that the S_{Ad} -N transition temperatures show a remarkable upward convexity which usually observed in so-called 'polar - nonpolar' mixtures, 1 , 2) while both components are polar. The second is that the diagram shows an injected $\boldsymbol{S}_{\boldsymbol{A}}$ phase having a uniaxial nature. This phase is proposed to be an antiphase ($S_{\widetilde{\mathbf{A}}}$). The third is that the $S_{\widetilde{\mathbf{C}}}$ phases also show interesting non-linearities with composition. These interesting phenomena should be

In Fig. 2, the $S_{Ad}(1)$ phase is isomorphous with the S_A phase of the nonpolar

References

Further study is now underway.

1) G. W. Gray and J. W. Goodby, "Smectic Liquid Crystals," Heyden & Son Inc., Philadelphia (1984), p. 134.

concerned with a dipole - dipole interaction of both components. 6)

- 2) D. Demus, S. Diele, S. Grande, and H. Sackman, "Advances in Liquid Crystals," ed by G. H. Brown, Academic Press, New York (1983), p. 1.
- 3) G. Sigaud, Nguyen Huu Tinh, F. Hardouin, and H. Gasparoux, Mol. Cryst. Liq. Cryst., $\underline{69}$, 81 (1981).
- 4) Y. Nishihata, H. Sakashita, H. Terauchi, S. Takenaka, and S. Kusabayashi, J. Phys. Soc. Jpn., in press.
- 5) R. Shashidhar, B. R. Ratna, and S. K. Prasad, Mol. Cryst. Liq. Cryst., <u>102</u>, 105 (1984).
- 6) S. Takenaka, M. Koden, and S. Kusabayashi, J. Phys. Chem., in press.

 (Received August 8, 1985)